CONFORMATIONAL STUDIES ON ALDONOLACTONES BY N.M.R. SPECTROSCOPY. CONFORMATIONS OF D-GLUCONO-, D-MANNONO-, D-GULONO- AND D-GALACTONO-1,4-LACTONE IN SOLUTION*†

ZBIGNIEW WAŁASZEK[‡] AND DEREK HORTON**

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received January 12th, 1981; accepted for publication, March 12th, 1981)

ABSTRACT

The conformations of D-glucono-, D-mannono-, D-gulono-, and D-galactono-1,4-lactone in solution were studied by ${}^{1}\text{H-}$ and ${}^{13}\text{C-n.m.r.}$ spectroscopy. The two equilibrating, envelope forms $[{}^{3}E(D)$ and $E_{3}(D)]$ of the lactone ring are weighted strongly in favor of the conformation having the OH-2 group quasiequatorially oriented, except for D-glucono-1,4-lactone. Side-chain CHOHCH₂OH groups adopt orientations devoid of unfavorable, 1,3-parallel interactions of OH groups.

INTRODUCTION

The importance of aldonic and aldaric acids in metabolism is well established². Some aldono- and aldaro-lactones are highly specific, competitive inhibitors of certain glycosidases³, and information on the conformational properties of sugar lactones is important for detailed understanding of their chemical and biological behavior. The accompanying papers describe the conformations of D-glucarolactones⁴ and D-pentono-1,4-lactones⁵ in solution as revealed by n.m.r. spectroscopy.

Among the D-hexono-1,4-lactones, the solid-state conformations of D-galactono-1,4-lactone⁶, D-gulono-1,4-lactone⁷, and 2,3,6-tri-O-methyl-D-galactono-1,4-lactone⁸ have been determined; all of these lactones adopt envelope conformations having the OH-2 group quasiequatorially oriented. Envelope conformations have been considered for some hexono-1,4-lactones in solution^{9,10}, but these have not been firmly established by experiment.

The present work is a ¹H- and ¹³C-n.m.r. spectroscopic study of four D-hexono-1,4-lactones of biological interest, namely, D-glucono-1,4-lactone (1), D-mannono-1,4-lactone (2), D-gulono-1,4-lactone (3), and D-galactono-1,4-lactone (4).

^{*}This work was supported by NSF Grant No. MPS72-04609-A01 (O.S.U.R.F. Project 3443-A1).

[†]For a preliminary report, see ref. 1.

^{*}Present address: Institute of Oncology, Department of Tumor Biology, 44-100 Gliwice, Poland.

^{**}To whom inquiries should be addressed.

RESULTS AND DISCUSSION

¹H-N.m.r. spectra. — No systematic, ¹H-n.m.r. studies of hexono-1,4-lactones appear to have been undertaken thus far. Although ¹H-n.m.r. spectra of 1 in D₂O were recorded ¹¹ at 60 MHz, the spectra were not of first order, and no conformational information was obtained from them. Likewise, ¹H-n.m.r. spectra of the per-Omethyl derivative of 1 were recorded at 60 MHz, but only the chemical shifts of Omethyl groups were given ¹². Recently, ¹H-n.m.r. data, including some coupling constants, have been determined ^{12a} for partially silylated derivatives of 1-4.

The 1 H-n.m.r. spectra of compounds 1-4 were recorded at 100 MHz, deuterium oxide, metnanol- d_4 , pyridine- d_5 , and dimethyl sulfoxide- d_6 being used as the solvents. As aids to spectral resolution, a lanthanide shift-reagent or the per-O-acetyl derivatives were used in some instances. Computer-simulated spectra were also generated, in order to verify assigned 1 H-n.m.r. chemical-shifts and coupling-constants. Chemical-shift and coupling-constant data are given in Table I.

Chemical shifts. — The remarks made earlier regarding D-pentono-1,4-lactones⁵ appear also to be valid for the D-hexono-1,4-lactones. The C-5 protons in the latter resonate at somewhat lower field than H-6 and H-6'.

Coupling constants. — Proton-proton coupling-constants for the D-hexono-1,4-lactones are similar to those of corresponding lactones studied earlier^{4,5}; their magnitudes were indicative of conformational equilibria between two envelope forms. Coupling constants found for the side-chain protons were largely consistent with expectations based on work with acyclic sugars¹³ and with data reported for D-pentononitriles¹⁴ and D-hexononitriles¹⁵, and D-hexonic acids¹⁶.

¹³C-N.m.r. spectra. — Proton-decoupled, natural-abundance-¹³C, pulse Fourier-transform, n.m.r. spectra of 1-4 were recorded for solutions in D₂O before and after

TABLE I

100-MHz, ¹H-n.m.r. data for diglucono-1,4-lactone (1), dimannono-1,4-lactone (2), digulono-1,4-lactone (3), digractono-1,4-lactone (4), AND 2,3,5,6-TETRA-O-ACETYL-D-GALACTONO-1,4-LACTONE

Compound	Solvent	Chemica	hemical shifts in 8 values	valuesa		1	! !	Coupli	Coupling constants in III	mts in Hz		:	
	:	Н-2	11.3	H-4	H-5	11.6	,9-H	3J2,3	3Ja,4	3,14,5	3J5,6	3]6,6'	2J _{6,0} ′
-	CD ₃ 0D	4.27d	4.37q	4.569	4.000	3.78q	3,70q	4.5	5.0	0'9	3.9	5.7	-11.5
	(CD ₃) ₂ SO ⁶	4.52d	4.63q	4.89q	4.260	3.989	3,549	3,8	4.6	6'9	3.8	5.7	-11.5
	N°O'.	4.89m	4.95m	5.07q	4.590	4.239	4.15g	4.3	4.5	9'9	4.0	5.2	-11,5
7	D20	5.07d	4.94q	4.78q	4.34q	4,169	4.03q	4.5	5.6	8.9	2.8	5.1	-12.0
	CD ₃ 0D	4.54d	4.47q	4.31q	3.970	3.81q	3,63q	4,6	2.4	6,8	2,8	5.1	-11.7
	$(CD_3)_2SO^b$	4.92d	4.73q	4,03q	4.210	4.06q	3,869	4.3	5.6	9.8	5.6	5.2	-11.6
	C_bD_5N	4.85d	4.96q	4.77q	4,650	4.20q	3.989	4.3	2.3	0'6	5.6	4.4	-11,5
9	D20	4.75d	4.58q	4.52q	4,090	3,839	3.71q	4.6	2.7	5,3	3.9	5,5	-12.2
	$(CD_0)_0SO$	4.91d	4.72q	4.679	4,250	4,009	3.949	4.6	2.6	4.5	3.8	5.2	-11,8
4	C_6D_6N	5.03d	5.25t	4.92q	4.52m	4.28m	4.22m	8.5	8.0	2.4	5.5	7.7	-11.0
tetraacetate	CDCI36	5.58d	5.37q	4.53q	5.25q	4,319	4.15q	7.1	9,9	2.9	5.4	6.5	-11.9
	$(CD_3)_2SO^d$	5.78d	5.47t	4.84q	5.320	4.29q	4.20q	7.5	7.0	3.5	5.4	6.4	-11.9
1		* *************************************	:		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1					:

^aSignal multiplicities: d, doublet; m, complex multiplet; o, octet; q, quartet; t, triplet. ^bIn the presence of CF_aCO₂H. ^cChemical shifts of acetyl-group protons: ^b 2.10, 2.08, 2.04, and 2.09, dChemical shifts of acetyl-group protons: ^b 2.13, 2.09, 2.07, and 2.03.



Fig. 1. The 100-MHz, 1 H-n.m.r. spectrum of p-glucono-1,4-lactone (1) in methanol- d_4 (upper trace) and the simulated spectrum (lower trace).

mutarotation, and in dimethyl sulfoxide- d_6 . Assignments were made by following assumptions described earlier^{4,5}. Chemical shifts and "solvent-induced" shifts⁵ are given in Tables II and III. The resonances of C-1, C-2, C-3, and C-4 of D-hexono-1,4-lactones appear at fields similar to those characteristic of C-1, C-2, C-3, and C-4 of D-pentono-1,4-lactones⁵ having the same ring-carbon configurations. The C-5 resonances for D-hexono-1,4-lactones are shifted to lower field (71.3-68.7 p.p.m. in D₂O), as the secondary C-5 atoms in D-hexono-1,4-lactones are deshielded in comparison with the (primary) C-5 atoms in D-pentono-1,4-lactones. Comparison of the data for the D-pentono-1,4-lactones and the D-hexono-1,4-lactones showed that C-2 and C-3, and also C-1, C-4, and C-5, experience similar shielding and deshielding effects. The relative positions of corresponding carbon-resonances in D-hexono-1,4-lactones and D-hexonic acids¹⁶ are similar to those observed for D-pentono-1,4-lactones and D-pentonic acids⁵. The C-6 resonances for D-hexono-1,4-lactones appear at slightly higher field, δ 62.5-63.5 p.p.m. in D₂O, than those for D-hexonic acids¹⁶.

All resonances are shifted to higher field in dimethyl sulfoxide- d_6 in comparison with solutions in D₂O, but not to the same extent. Regularities similar to those found for D-pentono-1,4-lactones and D-pentonic acids⁵ were observed.

TABLE II carbon-13 chemical-shifts for some D-hexono-1,4-lactones in D2O at $\sim\!30^\circ$

Compound	Chemica	l shifts in p.j	p.m. downfield	l from Me ₄ S	i ^a	
	C-I	C-2	C-3	C-4	C-5	C-6
p-Glucono-1,4-lactone (1)	177.8	74.0°	73.55 ^b	80.65	71.3	63.35
D-Mannono-1,4-lactone (2)	178.9	71.6 ^b	70.4 ^b	79.55	68.65	63.5
D-Gulono-1,4-lactone (3)	178.9	71.8 ^b	71.16	82.3	70.6	62.55
D-Galactono-1,4-lactone (4)	176.9	74.6 ⁵	73.8 ^b	81.1	69.9	63.0

^aOriginal data, referenced to the highest-field resonance of DSS, were converted according to the empirical equation^{4.5}: δ Me₄Si = δ DSS -1.6. Assignments were made following principles established for 1,4-lactones and for furanoid sugars, as described earlier^{4.5}. Comparisons of the hexono-1,4-lactones and the hexonic acids¹⁶ with each other and with other, related compounds^{4.5} were made. ^bAssignments may have to be reversed.

Conformational features of individual D-hexono-1,4-lactones. — D-Glucono-1,4-lactone (1). Coupling constants found for 1 (see Table I and Fig. 1) indicate that the ${}^3E(D) \rightleftharpoons E_3(D)$ equilibrium exists in solution, with the ${}^3E(D)$, tg, g't' conformational state being favored (see Table IV). The ${}^3E(D)$ conformation, having HO-2 quasiaxial, was somewhat unexpected, but is clearly indicated from the 1H -n.m.r. data. Chiroptical properties 12a,18 of 1 have been interpreted as favoring the $E_3(D)$ conformation of the lactone ring in 1, but this assignment may require revision, as the molecular ellipticities observed may be the sum of two effects, one of configuration at C-2, the other of ring geometry 19 .

TABLE III

CARBON-13 CHEMICAL-SHIFTS OF SOME D-HEXONO-1,4-LACTONES IN Mc2SO-da

	Chemical suifis	in popula technique			chemed suits in p.p.m. downfeld from meerial ideast, and solven-induced suits 7:10" (in parentheses)	es)
	CI	C:3	C-3	C-4		C-6
	A P T T T T M A P T T T T T T T T T T T T T T T T T T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			The Company of the Company of	
D-Glucono-1,4-lactone (1)	175.5(2.3)	73,1 ^b (0.9)	72,74(0.85)	79,9(0,75)	(6.4(1.9)	62.7(0.6)
D-Mannono-1,4-lactone (2)	176.2(2.7)	70,61,0)	(6),1 (0,5)	78,0(1,55)	67.8(0.85)	62.8(0.7)
D-Gulono-1,4-lactone (3)	175,9(3.0)	70.49(1.4)	(69.94(1.2)	80.5(1.8)	69.3(1.3)	61.7(0.85)
D-Galactono-1,4-lactone (4)	174.6(2.3)	73.74(0.9)	72.5%(1.3)	79.4(1.7)	68.2(1.7)	61.7(1.3)

 $^aA\delta=\delta D_2O-\delta Me_2SO-d_0$. bAssignments may have to be reversed,

$$\begin{array}{c} CH_2OH \\ HO \\ CHOH \\ H \end{array}$$

Interestingly, in D-glucaro-1,4-lactone, a corresponding conformational equilibrium was found to be shifted toward the $E_3(D)$ conformation, which has OH-2 quasiequatorially oriented, and OH-5 is situated over the lactone ring⁴; it seems probable that the CO_2H group in the aldarolactone makes intramolecular hydrogenbonding and stabilization easier than in 1. Furthermore, the CO_2H group in the

TABLE IV

CONFORMER POPULATIONS FOR D-GLUCONO-1,4-LACTONE (1), D-MANNONO-1,4-LACTONE (2), D-GULONO-1,4-LACTONE (3), AND D-GALACTONO-1,4-LACTONE (4) AND ITS 2,3,5,6-TETRA-O-ACETYL DERIVATIVE, IN SOLUTION

Compound	Solvent		ring conformational ions in percent ^a	Exocyclic formation			I group co in percent	
		³E	E ₃		-	g′g′	g't' (t'g')	t'g' (g't')
				gg + gt	tg			
1	CD ₃ OD	70	30	50	50	35	40	25
	$(CD_3)_2SO$	80	20	45	55	35	40	25
	C ₅ D ₅ N	80	20	50	50	40	50	10
2	D_2O	100	0	25	75	50	35	15
	$\overline{\text{CD}_3\text{OD}}$	100	0	25	75	50	35	15
	(CD ₃) ₂ SO	100	0	30	70	50	40	10
	C_5D_5N	160	0	25	75	50	35	15
				gg + tg	gt			
3	D_2O	0	100	50	40	35	25	40
	(CD ₃) ₂ SO	0	100	70	30	40	25	35
4	C_5D_5N	15	85	90	10	0	40	60
tetraacetate	$CDCl_3$	30	70	85	15	10	40	50
	(CD ₃) ₂ SO	25	75	80	20	10	35	55

"Calculated for 1 from the coupling constants between the cisoidal H-3 and H-4, as for p-xylono-1,4-lactone⁵, for 2 as for p-lyxono-1,4-lactone⁵, for 3 as for p-lyxono-1,4-lactone⁵, and for 4 and its tetraacetate as for p-arabinono-1,4-lactone⁵. Calculated from the Karplus relation with $J_{60^{\circ}} = 1.5$ and $J_{180^{\circ}} = 11.5$ Hz, as for nucleosides¹⁷. See corresponding formulas for the assignment of H-6 and H-6'; the assignments are, to some extent, arbitrary, and may have to be reversed.

TABLE V

100-MHz, ¹H-n,m.r. data for d-glucono-1,4-lactone (1) in methanol- d_i in the presence of PrCl₃ at $\sim 30^\circ$

Equiv. of PrCl ₃	Chemical si (in parenth	Chemical shifts in δ values ^a and lanthanide-induced shifts ^b in $2l\delta$ (in parentheses)	and lanthar	nide-induced s	shifts ^b in Að		Coupling	ıg constan	<u> </u>			
added	H-2	Н-3	H-4	H-5	9-H	,9-H	312,3	3J3,4		3,5,6	35,6'	3J _{6,6} ′
0.0	4,27d	4,37q	4.56q	4,000	3.78q	3.70q	4.5	5.0	9.9	3,9	5.7	-11.5
0.2	4.25d	4.36q	4,56q	4.010	3,819	3.72q	4.5	5.0	2'9	3.7	5.7	-11.6
	(-0.02)	(-0.01)	(0.00)	(0,01)	(0.03)	(0.05)						
0.4	4.25d	4,369	4.569	4.040	3,84q	3.75q	4.5	2.0	9,9	3,8	2.6	-11.7
	(-0.02)	(-0.01)	(0.00)	(0.04)	(90'0)	(0.02)						
9'0	4,24d	4,359	4.56q	4.050	3,879	3.789	4,5	2,0	6.5	3,8	5.7	-11.5
	(-0.03)	(-0.02)	(0.00)	(0.05)	(0'0)	(0.08)						
												,

"Signal multiplicities as in Table I. "Upfield shifts negative.

aldarolactone undoubtedly influences the conformational equilibrium in solution through changes in local dipole-moments of the molecule.

It should also be noted that addition of $PrCl_3$ does not affect the coupling constants and only slightly affects the chemical shifts (see Table V), whereas such addition strongly affects chemical shifts⁴ of D-glucaro-1,4-lactone. Amounts of $PrCl_3$ approximately 10 times those used with D-glucaro-1,4-lactone are needed in order to produce observable changes in chemical shifts for 1, possibly because of the absence of a CO_2H group in 1. Aldonic acids have been reported to chelate a lanthanide cation through the α -carboxy, α -hydroxy, and β -hydroxy oxygen atoms²⁰. The origin of interactions between polyols and Pr^{3+} , Eu^{3+} , and Nd^{3+} has been discussed in detail²¹. An interesting feature of the ¹³C-n.m.r. spectra of 1 is some deshielding of C-5, especially in D_2O , in comparison with other hexono-1,4-lactones studied, together with slight shielding of C-2 and slight deshielding of C-5, in comparison with D-glucaro-1,4-lactone⁴; all of the foregoing effects accord with a favored $^3E(D)$ conformation of 1.

$$\begin{array}{c} CH_2OH \\ HO \\ CHOH \\ HO \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ CHOH \\ HO \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ CHOH \\ HO \\ \end{array}$$

$$\begin{array}{c} HO \\ HO \\ HO \\ \end{array}$$

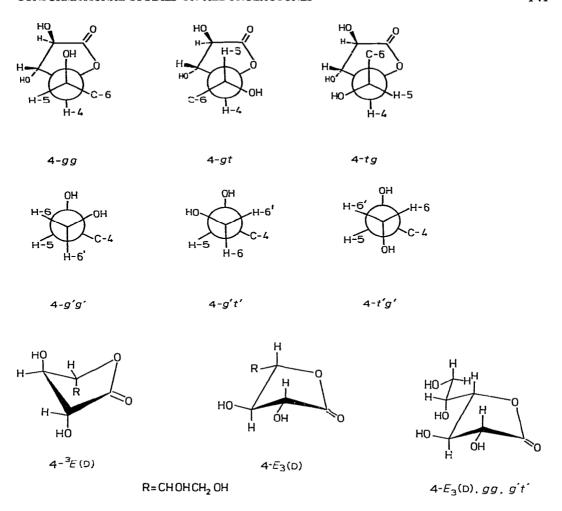
$$\begin{array}{c} CH_2OH \\ CHOH \\ HO \\ \end{array}$$

$$\begin{array}{c} HO \\ HO \\ HO \\ \end{array}$$

$$\begin{array}{c} HO \\ HO \\ HO \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ CHOH \\ HO \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ CHOH \\ HO \\ \end{array}$$


$$\begin{array}{c} HO \\ HO \\ HO \\ \end{array}$$

$$\begin{array}{c} HO \\ HO \\ HO \\ \end{array}$$

$$\begin{array}{c} CH_2OH \\ HO \\ \end{array}$$

D-Mannono-1,4-lactone (2). Coupling constants observed for 2 (see Table I) are consistent with a conformational equilibrium in solution (see Table IV) between the aforedepicted conformations. The equilibrium appears to be shifted far in favor of the ${}^{3}E(\mathbf{p})tg,g'g'$ conformation; the relatively large shielding of C-4 and C-5 provides additional evidence for this conclusion. Contribution from the $E_{3}(\mathbf{p})$ form is negligible.

D-Gulono-1,4-lactone (3). For this lactone in solution, the coupling data (see Table I) indicate essentially exclusive population of the $E_3(D)$ conformer (see Table IV). The $E_3(D)$, gt,g'g' conformation has been found for 3 in the crystalline state⁷. Ring-carbon resonances in the ¹³C-n.m.r. spectra of 3 appear at fields similar to those found for corresponding carbon atoms of L-gularo-1,4-lactone (D-glucaro-6,3-lactone)⁴ and D-lyxono-1,4-lactone⁵, both of which have similar geometry in the lactone ring. The avoidance of an unfavorable interaction between HO-3 and HO-5 constitutes a major factor in determining the favored conformational state of 3.

D-Galactono-1,4-lactone (4). For compound 4 in solution, the coupling constants (see Table I and Fig. 2) are consistent with a conformational equilibrium between the aforedepicted conformations strongly shifted (see Table IV) toward the $E_3(D)$ conformation. The $E_3(D)$,gg,g't' conformation was found for 4 in the crystalline state⁶. Resonances of the lactone-ring carbon atoms appear at very similar fields in the ¹³C-n.m.r. spectra of 4 and D-arabinono-1,4-lactone⁵, which have the same geometry of the lactone ring.

General conclusions on conformations of D-hexono-1,4-lactones in solution. — Conformational equilibria between two envelope forms $[^3E(D)]$ and $E_3(D)$ are generally weighted toward the conformation having OH-2 quasiequatorially oriented. Similar tendencies have been found for D-pentono-1,4-lactones⁵ and partially silylated derivatives^{12a} of 1-4 in solution, and for D-hexono-1,4-lactones in the crystalline state⁶⁻⁸. The side chain (CHOHCH₂OH) on C-4 in D-hexono-1,4-lactones generally favors an orientation in which 1,3-parallel interactions¹³ of OH groups are avoided.

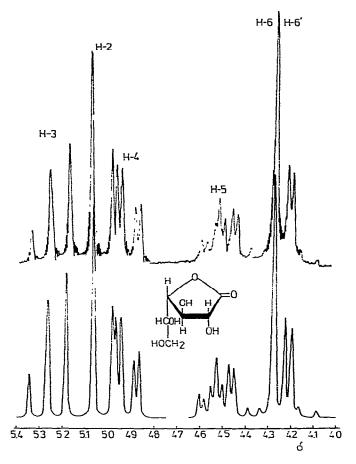


Fig. 2. The 100-MHz, 1 H-n.m.r. spectrum of p-galactono-1,4-lactone (4) in pyridine- d_5 (upper trace), and the simulated spectrum (lower trace).

In D-glucono-1,4-lactone (1), the orientation of the C-4 side-chain appears to dictate the ${}^{3}E(D)$ conformation of the lactone ring, in which OH-2 is quasiaxially oriented. Changes of the solvent does not exert any significant effect on the conformational equilibria (see Table IV). In contrast, peracetylation influences the equilibria, indicating that, as with D-pentono-1,4-lactones⁵, intramolecular hydrogen-bonding takes part in the stabilization of the favored conformations.

EXPERIMENTAL

Materials. — p-Galactono-1,4-lactone and p-gulono-1,4-lactone were obtained from Pfanstiehl Labs., Waukegan, Illinois. Literature procedures were used for preparing p-glucono-1,4-lactone²², p-mannono-1,4-lactone²², and 2,3,5,6-tetra-0-acetyl-p-galactono-1,4-lactone²³. All compounds had physical constants in agreement

with published values and were chromatographically homogeneous. T.l.c. was performed as described earlier^{4,5}.

¹*H-N.m.r. spectra*. — Spectra were recorded at 100 MHz, as described earlier^{4,5}. Spectra were computer-simulated with the aid of the program LAOCOON III.

¹³C-N.m.r. spectra. — Proton-decoupled, natural-abundance-carbon-13, pulse, Fourier-transform, n.m.r. spectra were recorded as described earlier^{4,5}.

ACKNOWLEDGMENT

We thank Dr. Irena Ekiel of the Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Poland, for simulation of n.m.r. spectra.

REFERENCES

- 1 D. HORTON AND Z. WAŁASZEK, Abstr. Pap. Am. Chem. Soc. Meet., 170 (1975) CARB-10.
- 2 O. Touster, Carbohydrate Metabolism, in M. FLORKIN AND F. M. STOTZ (Eds.), Comprehensive Biochemistry, Vol. 17, Elsevier, Amsterdam, 1969, Chapter 6.
- 3 G. A. LEVVY AND S. M. SNAITH, Adv. Enzymol., 36 (1972) 151-181.
- 4 D. HORTON AND Z. WAŁASZEK, Carbohydr. Res., 105 (1982) 95-109.
- 5 D. HORTON AND Z. WAŁASZEK, Carbohydr. Res., 105 (1982) 111-129.
- 6 G. A. Jeffrey, R. D. Rosenstein, and M. Vlasse, Acta Crystallogr., 22 (1967) 725-733.
- 7 H. M. BERMAN, R. D. ROSENSTEIN, AND J. SOUTHWICK, Acta Crystallogr., Sect. B, 27 (1971) 7-10.
- 8 B. Sheldrick, Acta Crystallogr., Sect. B, 29 (1973) 2631-2632.
- 9 R. U. Lemieux, Rearrangements and Isomerisation in Carbohydrate Chemistry, in P. DE MAYO (Ed.), Molecular Rearrangements, Vol. 2, Interscience, New York, 1964, pp. 719-723.
- 10 J. F. STODDART, Stereochemistry of Carbohydrates, Wiley-Interscience, New York, 1971, Chapter 5.
- 11 D. T. SAWYER AND J. R. BRANNAN, Anal. Chem., 38 (1966) 192-198.
- 12 Y. POCKER AND E. GREEN, J. Am. Chem. Soc., 96 (1974) 166-173.
- 12a E. MARK AND E. ZBIRAL, Monatsh. Chem., 112 (1981) 215-239.
- 13 D. HORTON AND J. D. WANDER, Adv. Carbohydr. Chem. Biochem., 32 (1976) 16-123, and references cited therein; compare, M. Blanc-Muesser, J. Defaye, and D. Horton, Carbohydr. Res., 87 (1980) 71-86.
- 14 W. W. BINKLEY, D. R. DIEHL, AND R. W. BINKLEY, Carbohydr. Res., 18 (1971) 459-465.
- A. M. Seldes, E. G. Gros, I. M. E. Thiel, and J. O. Deferrari, Carbohydr. Res., 39 (1975)
 11-17; L. W. Sweeting and B. Coxon, ibid., 72 (1979) 43-55.
- 16 D. HORTON, Z. WAŁASZEK, AND I. EKIEL, unpublished results.
- 17 D. J. WOOD, F. E. HRUSKA, AND K. K. OGILVIE, Can. J. Chem., 52 (1974) 3353-3366.
- 18 S. BYSTRICKÝ, T. STICZAY, S. KUČAŔ, AND C. PECIAR, Collect. Czech. Chem. Commun., 41 (1976) 2749–2754.
- 19 H. MEGURO, K. HACHIYA, A. TAGIRI, AND K. TUZIMURA, Agric. Biol. Chem., 36 (1972) 2075–2079; T. KONNO, H. MEGURO, AND K. TUZIMURA, Tetrahedron Lett., (1975) 1305–1308, and references cited therein.
- T. TAGA, Y. KURODA, AND M. OHASHI, Bull. Chem. Soc. Jpn., 51 (1978) 2278-2282.
- 21 J. REUBEN, J. Am. Chem. Soc., 99 (1977) 1765-1768.
- 22 H. S. ISBELL AND H. L. FRUSH, Bur. Stand. J. Res., 11 (1933) 649-664.
- 23 F. W. UPSON, J. M. BRACKENBURY, AND C. LINN, J. Am. Chem. Soc., 58 (1936) 2546-2552.